Comparing pixel-based and object-based algorithms for classifying land use of arid basins (Case study: Mokhtaran Basin, Iran)

نویسندگان

  • H. Memarian Department of Watershed Management, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
  • M. Rahimi Department of Combat Desertification, Faculty of Desert Studies, Semnan University, Semnan, Iran
  • S.H. Kaboli Department of Combat Desertification, Faculty of Desert Studies, Semnan University, Semnan, Iran
  • Sh. Nikoo Department of Combat Desertification, Faculty of Desert Studies, Semnan University, Semnan, Iran
  • Z. Rafieemajoomard Department of Combat Desertification, Faculty of Desert Studies, Semnan University, Semnan, Iran
چکیده مقاله:

In this research, two techniques of pixel-based and object-based image analysis were investigated and compared for providing land use map in arid basin of Mokhtaran, Birjand. Using Landsat satellite imagery in 2015, the classification of land use was performed with three object-based algorithms of supervised fuzzy-maximum likelihood, maximum likelihood, and K-nearest neighbor. Nine combinations were examined in terms of scale level (SL10, SL30, and SL50) and the nearest neighborhood (NN3, NN5, and NN7) in an object-based classification. Ultimately, the validity was evaluated through the usage of two disagreement components including allocation disagreement and quantity disagreement. Results of maximum likelihood classification showed higher overall inaccuracycompared to images categorized based on fuzzy-maximum likelihood and object-based nearest neighbor algorithms. The SL30-NN3 object-based classifier decreased the quantity disagreement by 290% compared to the maximum likelihood and 265% compared to fuzzy-maximum likelihood classifiers. For allocation disagreement, these values were equal to 36% and 19%, respectively. Thus, object-based classification had a better performance in land-use classification of Mokhtaran basin.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

متن کامل

task-based instruction, consciousness-raising and iranian efl learners acquisition and use of collocation

the present study sought to examine whether a task-based approach could have an impact on raising awareness of collocations. moreover, it sought to investigate the facilitative role of consciousness-raising tasks of collocations in the communicative instances of use. to this end, 68 intermediate learners of english were selected via a placement test. the participants were taught with classroom ...

15 صفحه اول

task-based language teaching in iran: a mixed study through constructing and validating a new questionnaire based on theoretical, sociocultural, and educational frameworks

جنبه های گوناگونی از زندگی در ایران را از جمله سبک زندگی، علم و امکانات فنی و تکنولوژیکی می توان کم یا بیش وارداتی در نظر گرفت. زبان انگلیسی و روش تدریس آن نیز از این قاعده مثتسنی نیست. با این حال گاهی سوال پیش می آید که آیا یک روش خاص با زیر ساخت های نظری، فرهنگی اجتماعی و آموزشی جامعه ایرانی سازگاری دارد یا خیر. این تحقیق بر اساس روش های ترکیبی انجام شده است.پرسش نامه ای نیز برای زبان آموزان ...

Comparing Pixel- and Object-Based Approaches in Effectively Classifying Wetland-Dominated Landscapes

Wetland ecosystems straddle both terrestrial and aquatic habitats, performing many ecological functions directly and indirectly benefitting humans. However, global wetland losses are substantial. Satellite remote sensing and classification informs wise wetland management and monitoring. Both pixeland object-based classification approaches using parametric and non-parametric algorithms may be ef...

متن کامل

Comparing pixel vs. object based classifiers for land cover mapping with Envisat- MERIS data

The work presented in this paper is part of SatStat project, which is being developed in e-Geo – Geography and Regional Planning Research Centre of the Universidade Nova de Lisboa, under the framework of the European Space Agency (ESA) Announce of Opportunities for Portugal. The main goal of SatStat is to annual monitor forest areas using low resolution images. The imagery dataset includes an E...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 24  شماره 1

صفحات  119- 132

تاریخ انتشار 2019-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023